

UTKAL INSTITUTE OF ENGINEERING & TECHNOLOGY

DISCIPLINE: CIVIL	SEMESTER: 4TH Sem	NAME OF THE TEACHING FA		r.Rehebari
SUBJECT: STRUCTURAL DESIGN-I	No of Days/Per week class allotted: 5 Class P/W(75)	Semester From Date:16/01/2024 To Date:26/04/2024 No. Of Weeks:	: 15	
WEEK	CLASS DAY	THEORY TOPICS	REM	IARKS
	₁ st	Working stress method (WSM),Objectives of design and detailing. State the different methods of design of concrete structures	Date	Dean/Prin cipal
l st	2nd	Introduction to reinforced concrete, R.C. sections their behavior, grades of concrete and steel. Permissible stresses, assumption in W.S.M.		
	3rd	Flexural design and analysis of single reinforced sections from first principles		
	4 th	Concept of under reinforced, over reinforced and balanced sections.		
	5 th	Advantages and disadvantages of WSM, reasons for its obsolescence		
	₁ st	Philosophy Of Limit State Method (LSM), Definition, Advantages of LSM over WSM, IS code suggestions regarding design philosophy.		
	2nd	Types of limit states, partial safety factors for materials strength, characteristic strength, characteristic load, design load, loading on structure as per I.S. 875		
2nd	3rd	Study of I.S specification regarding spacing of reinforcement in slab, cover to reinforcement in slab, beam column & footing, minimum reinforcement in slab, beam & column, lapping, anchorage, effective span for beam & slab.		

1			
		Analysis and Design of Single and	
	4 th	Double Reinforced Sections (LSM),	
	4	Limit state of collapse	
		(flexure)	
	5 th	Assumptions	
	1st	Stress-Strain relationship for	
		concrete and steel	
	2nd	neutral axis	
	Zina		
		stress block diagram and strain	
3rd	3rd	diagram for singly reinforced	
		section.	
		stress block diagram and strain	
	4 th	diagram for singly reinforced section.	
	5th	Concept of under- reinforced	
	1st	over-reinforced and limiting section	
	2nd	neutral axis co-efficient	
		limiting value of moment of	
	3rd	resistance and limiting percentage of	
		steel required for limiting singly R.C.	
4 th		section	
		Section	
	4 th	Analysis and design	
	5th	determination of design	
		constants	
		moment of resistance and area of	
	1 st	steel for rectangular sections	
	2nd	Necessity of doubly reinforced	
		section	
	3rd	design of doubly reinforced	
		rectangular section	
		Shear, Bond and Development	
		Length (LSM),Nominal shear stress in	
		R.C. section, design shear strength of	
		concrete, maximum shear stress,	
	ath	design of shear reinforcement, minimum shear reinforcement, forms	
	4th	of shear reinforcement.	
		or streat retition certient.	
5 th			
		Pand and types of hand, hand stress	
		Bond and types of bond, bond stress,	
		check for bond stress, development	
		length in tension and compression,	
		anchorage value for hooks 900 bend	
	5 th	and 450 bend standards lapping of	
		bars, check for development length.	
	-		
	1 st	Numerical problems on deciding	
		whether shear reinforcement is	
		required or not, check for adequacy	
		of the	
		section in shear	

6 th	2 nd	Design of shear reinforcement; Minimum shear reinforcement in beams (Explain through examples only).	
	3rd	Analysis and Design of T-Beam (LSM),General features	
	4th	advantages	
	5 th	effective width of flange as per IS: 456-2000 code provisions	
	_I st	effective width of flange as per IS: 456-2000 code provisions	
	2nd	Analysis of singly reinforced T- Beam	
7 th	3rd	Doubt Clear Class of singly reinforced T-Beam	
	4 th	strain diagram & stress diagram	
	5th	depth of neutral axis	
	1 st	moment of resistance of T- beam section with neutral axis lying within the flange.	
	2nd	moment of resistance of T- beam section with neutral axis lying within the flange.	
	3rd	Assignment	
gth	4 th	Simple numerical problems on deciding effective flange width	
	5 th	Problems only on finding moment of resistance of T- beam section when N.A. lies within or up to the bottom of flange shall be asked in written examination	
	1st	Problems only on finding moment of resistance of T- beam section when N.A. lies within or up to the bottom of flange shall be asked in written examination	
	2 nd	Doubt Clear Class	
	3rd	Analysis of Slab and Stair case (LSM),Design of simply supported one-way slabs	
9th	4 th	Design of simply supported one- way slabs for flexure check for deflection control and shear	

	5th	Design of one-way cantilever slabs and cantilevers chajjas for flexure check for deflection control and check for development length and shear	
		Design of one-way cantilever slabs and cantilevers chajjas for flexure	
	<u>Į</u> st	check for deflection control and check for development length and shear	
10th	2nd	Design of one-way cantilever slabs and cantilevers chajjas for flexure check for deflection control and check for development length and shear	
	3rd	ASSIGNMENT	
	4 th	DOUBT CLEAR CLASS	
	5th	Design of two-way simply supported slabs for flexure with corner free to lift	
	Įst	Design of two-way simply supported slabs for flexure with corner free to lift	
11 th	2nd	Design of two-way simply supported slabs for flexure with corner free to lift	
	3rd	Design of dog-legged staircase	
	4 th	DOUBT CLEAR CLASS	
	5 th	Design of dog-legged staircase	
12 th	_] st	Detailing of reinforcement in stairs spanning longitudinally	
		Detailing of reinforcement in stairs spanning longitudinally	
	2 nd	Design of Axially loaded columns and Footings (LSM), Assumptions	
	3rd	Assumptions in limit state of collapse- compression.	
	4 th	Definition and classification of columns,	
	5th	effective length of column	
	1 st	effective length of column	
	2 nd	DOUBT CLEAR CLASS	
13th	3rd 4th	CLASS TEST Specification for minimum reinforcement	

		Specification for minimum
	5 th	reinforcement; cover, maximum
		reinforcement
	1st	number of bars in rectangular
	2nd	square and circular sections
	3 rd	ASSIGNMENT
14th	4th	diameter and spacing of lateral ties.
	5 th	Analysis and design of axially loaded short square
	<u>Į</u> st	rectangular and circular columns (with lateral ties only).
	2 nd	Types of footing
15 th	3rd	Design of isolated square column footing of uniform thickness for flexure and shear.
	4th	Design of isolated square column footing of uniform thickness for flexure and shear.
	5 th	Design of isolated square column footing of uniform thickness for flexure and shear.

HOD DEAN PRINCIPAL

